GTR-KTP

GTR-KTP

GTR-KTP crystals have greater gray track resistance than typical grown KTP. Compared with KTP, GTR-KTP has approximate 3 times bigger damage threshold than KTP crystals.That is why Optola produced GTR-KTP crystals are more effective way to reach high power densities than standard KTP.

 

  • Optola offers wide range of different GTR-KTP sizes.
  • Custom designs are available by request.
  • Dimension tolerance:±0.1mm
           •    Clear aperture: central 90% of the diameter
  • Flatness: less than λ/8 @ 633nm
           •    Transmitting wavefront distortion: less than λ/8 @ 633nm
           •    Chamfer: ≤0.2mmx45°     
  • Chip:≤0.1mm
           •    Surface quality Scratch/Dig:
                     < 10/5(polished only) to MIL-PRF-13830B

                     < 20/10(AR-coated) to MIL-PRF-13830B
                     < 40/20(HR-coated) to MIL-PRF-13830B
           •    Parallelism: better than 20 arc seconds
           •    Perpendicularity: ≤5 arc minutes
           •    Angle tolerance: ≤0.25°

 Transparency Range

 350~4500nm

 SHG Phase Matchable Range

 497 ~ 1800nm  (Type II)

 Thermal-optic Coefficients (/°C)

 dnx/dT=1.1X10-5
 dny/dT=1.3X10-5
 dnz/dT=1.6X10-5

 Absorption Coefficients

<0.1%/cm at 1064nm    <1%/cm at 532nm

 For Type II SHG of a Nd:YAG laser at 1064nm

Temperature Acceptance: 24°C·cm 
Spectral Acceptance: 0.56nm·cm
Angular Acceptance: 14.2mrad·cm (φ);55.3mrad·cm (θ)
Walk-off Angle: 0.55°

NLO Coefficients

deff(II)≈(d24 – d15)sin2Φsin2θ – (d15sin2Φ + d24cos2Φ)sinθ

Non-vanished NLO Susceptibilities

d31=6.5 pm/V           d24=7.6 pm/V
d32= 5 pm/V            d15=6.1 pm/V
d33=13.7 pm/V

Electro-optic Coefficients:

                  r13

                  r23

                  r33

                  r51

                  r42

Low frequecy(pm/V)        High frequency(pm/V)

               9.5                               8.8                   

              15.7                             13.8

               36.3                             35.0

                7.3                               6.9

                9.3                               8.8

Dielectric Constant

εeff=13

Sellmeier Equations  

    (λ in μm)

nx2=3.0065+0.03901/(λ2-0.04251)-0.01327λ2
ny2=3.0333+0.04154/(λ2-0.04547)-0.01408λ2 
nz2=3.3134+0.05694/(λ2-0.05658)-0.01682λ2

Leave a Reply